Bee products and their potential use in modern medicine.

The medical use of bee products, especially honey, can be traced back thousands of years to ancient Egypt, Greece and China. Healing properties and nutritional benefits are mentioned in many
religious texts including the Veda, Bible and Quran. Over time bee products have lost their importance and, today, bee products only play marginal roles in modern Westernised medicine. However, people in developing countries and followers of holistic approaches still use bee products on a large scale. In developed countries the use of bee products is often referred to as apitherapy, which is mainly applied by lay practitioners. Several books describe ways in which bee products can be used for several every day problems; however, there is not sufficient scientific evidence for most
applications. Often, the indiscriminate recommendations of apitherapists have worsened the reputation of bee products because many people did not distinguish between dubious apitherapists and serious approaches. The crucial questions in relation to that stated above are:
• why bee products disappeared from modern medicine,
• what bee products may still be reasonably used,
• how, and which, bee products could be reintroduced to modern medicinal practice.
Before answering these questions it seems important to look briefly into the history of pharmacology. In the beginning of medicine, medical treatments mainly represented medications which consisted of multiple substances, like herbal extracts. Some of these medications may have had favourable properties, others were inert and some may even have had adverse effects. This type of medicine
was common from antiquity up to the Middle Ages when early pharmacology was founded by Avicenna, Peter of Spain and John of St. Amand. Pharmacology, in the modern sense, was not established until the mid-nineteenth century. The first pharmacology department was set up by Rudolf Buchheim in Dorpat, Estonia in 1847, in recognition of the need to understand the working mechanisms of drugs and poisons. Until then the actions of drugs such as morphine or digitalis were explained vaguely with reference to extraordinary chemical powers and affinities to certain organs or tissues. Within time, pharmacology developed as a biomedical science which applied the principles of scientific experimentation to therapeutic contexts. In order to find the working principles behind
pharmacologically active mixtures, it was reasonable to search for active substances and isolate them from inactive ones and those which might be harmful. Then, the preparation with the active drug could be standardised and investigated regarding its chemical properties, interactions, toxicology, medical applications, antipathogenic capabilities and pharmacokinetic measures like half-life and volume of distribution. This was necessary as many substances require exact dosages in order to achieve effects or because of limited therapeutic indices. Over time, plant extracts and other natural preparations have widely disappeared from daily medical practice in conventional medicine. Instead, the working principles and active substances were discovered which were then produced in large quantities using chemical or biochemical syntheses. This approach is well in line with
pharmacological research and can explain the organism’s reactions via direct interactions between the drug and its target, which can be enzymes, receptors or other cellular functional structures. As a result there are only a few examples of therapeutic substances which consist of multiple components which have not been added intentionally for reasons of stability or galenics. Modern pharmacology
propagates the “one drug - one effect” concept. Accordingly, specific drugs cause dose-dependent therapeutic effects. This concept has led medicine to many outstanding successes in the treatment of
many diseases. However, treatments with a single drug could be less efficient than the use of the same substance in the natural working environment. A good example is lycopene which works less
efficiently alone compared to the efficacy of tomato products with a comparable lycopene concentration. Although many investigations were carried out in order to identify the queen-making substance, all efforts were in vain (Reimbold, 1987). Bee products are mixtures with different pharmacological substances acting in unison. Today, many patients ask for treatments with natural
products which are thus increasingly offered by medical practitioners. But phytotherapeutic drugs are also subject to registration and it is necessary that these preparations fulfil the same quality requirements as conventional medical products and contain standardised amounts of active substances.




これらの質問に答える前に、薬理学の歴史を簡単に見ることが重要と思われる。医学の始まりでは、医学治療とは主に、ハーブエキスなどの複数の物質から成る薬を指した。これらの薬剤には良好な特性を持つものもあったかもしれないが、不活性なものや、有害な作用を持つものもあった可能性すらある。このタイプの医学は、古代から、初期の薬理学がアヴィセンナ、スペインのペトロ、及びアマンのヨハネによって確立された中世まで一般的であった。現代的な意味の薬理学は、19世紀半ばまで確立されなかった。1847年、Rudolf Buchheimは、薬物や毒物が働くメカニズムを理解する必要性を認識して、エストニアのドルパートで最初の薬理学部門が設立された。それまでは、モルヒネやジギタリスなどの薬物の作用は、特別な化学的力と、特定の臓器や組織への親和性を参照して漠然と説明された。薬理学は、時間と共に科学実験の原則を治療の文脈に適用する生物医学科学として発展した。薬理学的に活性な混合物の背後にある作動原理を見つけるには、活性物質を検索し、それらを不活性なものや、有害である可能性のあるものから単離することが合理的であった。その後、活性薬物を用いた製剤を、その化学的特性、相互作用、毒物学、医療用途、抗病原機能、及び半減期や分布容積のような薬物動態学的尺度について標準化し、調べることが可能となった。このことが必要だったのは、多くの物質は効果を達成するために正確な投与量が必要であり、あるいは治療指標が限られていたためである。時間が経つにつれて、植物エキスなどの天然製剤は、通常医療における日常の医療行為から広い範囲で消えてしまった。代わりに、動作原理と活性物質が発見され、化学的または生化学的合成法を用いて大量に生産された。このアプローチは、薬理学的研究に沿ったものであり、薬物とその標的である酵素、受容体、または他の細胞機能構造との間の直接相互作用を介した生物の反応を説明することができる。その結果、生薬以外の安定性を理由に意図的に追加されていない複数の成分で構成される治療物質は、ほんの数例しかない。現代薬理学は、「1薬物-1効果」のコンセプトを伝播する。従って、特定の薬物は、用量依存的な治療効果を引き起こす。この概念は、医学を多くの疾患の治療における多くの優れた成功事例に導いた。しかし単剤による治療は、自然な作動環境で同じ物質を使用するよりも非効率的である可能性がある。リコピンが良い例で、単独では同等のリコピン濃度のトマト製品の有効性と比較して効率が低い。女王作成物質を同定するために 多くの研究が実施されたが、すべての努力が無駄であった(Reimbold, 1987)。ミツバチ製品は、一斉に作用する異なる薬理学的物質との混合物である。今日では、多くの患者が天然物による治療を希望し、従って医師による提供が増えている。しかし、植物療法薬も登録の対象となり、これらの製剤は、従来の医療用製品と同じ品質要件を満たし、標準化された量の活性物質を含有することが必要である。